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Motivation

Sellers often have a quality line of products to offer.

Some products may be horizontally differentiated, whilst others are
homogeneous.

Examples: Radio spectra, search words, cloud computing capacity. . .

But what is the optimal method of selling such goods?

Optimal multi-product selling mechanisms are hard and not well understood.

Optimal mechanisms may include randomisation.

Counterintuitive results, increasing buyer valuations may decrease seller
revenue (Hart & Reny, 2015).

Monotonicity does not tractably extend and cannot restrict to local
downward ICs even under regularity assumption.
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The Paper: A Roadmap

Two horizontally differentiated goods, several of each ‘type’. Collapse multivariate
valuations onto Hotelling line. Seller has goods at extreme ends of line. How to
deal with difficulties of multiple products?

Thm 1: Characterise optimal mechanism by novel saddle-point property
based on worst-off type.
Lem 4: Deal with monotonicity condition problems.
Using tractable monotonicity condition, iron out virtual valuations and
maximise pointwise.

Find the optimal mechanism. . .

Prop 2: Two independent auctions at extremes of Hotelling line optimal for
seller iff no buyer has positive valuation for both goods.
Thm 2/Prop 3: Defines optimal mechanism when indep auctions
non-optimal: randomises allocations.

Thm 3: Implementation via a two-stage clock auction.
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Setup: Environment

Two types of good at extremes of Hotelling line, indexed by ℓ ∈ {0, 1} with total
supply K0 and K1, respectively. There are N buyers, 1 seller. Assume for
presentation that K0 = K1 = N (monopoly problem).

x1 x2 . . . xN−1 xN

K0 goods

0

K1 goods

1

Buyers’ commonly value both goods at v . Unit demand for any good.

Location xi ∈ [0, 1] private info of buyers. Common prior xi
i.i.d∼ F , with

full-support density f .
Assume F is Myerson Regular — any non-monotonicty or randomised
allocation inherent to countervailing incentives. . .
For type x , probability of getting good ℓ ∈ {0, 1} is qℓ. If transfer t to seller,
expected payoff

q0(v − x) + q1(v − [1− x ])− t
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Setup: Mechanisms

Set of outcomes {(0, 0), (1, 0), (0, 1)}. Outcome (a, b) represents getting a units
of good 0 and b units of good 1.

A direct symmetric mechanism is ⟨Q,T ⟩,

Q = (Q0,Q1) : [0, 1]
N → ∆({(0, 0), (1, 0), (0, 1)})

T : [0, 1]N → R

Define interim allocation and transfer (q0, q1, t) and utility u as

q0(xn) = Ex−n [Q0(xn, x−n)]

q1(xn) = Ex−n [Q1(xn, x−n)]

t(xn) = Ex−n [T (xn, x−n)]

u(x , x ′) = q0(x
′)[v − x ] + q1(x

′)[v − (1− x)]− t(x ′)

Let u(x) = u(x , x) be truthful utility. IC and IR if for all x , x ′ ∈ [0, 1],
u(x) ≥ u(x , x ′) and u(x) ≥ 0.
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Implementability

Lemma 1

A direct mechanism ⟨Q,T ⟩ is incentive compatible if and only if for all
x , x ′ ∈ [0, 1],

q1(x)− q0(x) is increasing (CM)

u(x) = u(x ′) +

∫ x

x′
[q1(y)− q0(y)]dy (Env)

Fix critical type x ′ ∈ [0, 1] arbitrarily for now.

Problem 1: (CM) unwieldy: ideally q1(x) and −q0(x) non-decreasing in x ,
but not clear from constraint.

Problem 2: What should the critical type be? Easy to satisfy IR if pick
worst-off type, but who is this now? Critical worst-off type endogenous to
allocation rule by (CM)!

Problem 3: Have to think about more than just local downward IC
constraints (see next slide).
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Countervailing Incentives

By (Env), in any IC mech ⟨Q,T ⟩, seller revenue is

R(Q,T ; x ′) = N

(∫ 1

0

[q0(x)Ψ0(x , x
′) + q1(x)Ψ1(x , x

′)]dF − u(x ′)

)
= N(R̃(Q; x ′)− u(x ′))

where

Ψ0(x , x
′) =

{
v − ψB(x) if x > x ′

v − ψS(x) if x ≤ x ′

Ψ1(x , x
′) =

{
v − (1− ψB(x)) if x > x ′

v − (1− ψS(x)) if x ≤ x ′

Downward IC for x > x ′, upward IC for x ≤ x ′.

No natural way to restrict to only one direction =⇒ countervailing
incentives inherent (discontinuous at x ′).
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Critical Candidate: Worst-Off Types

Worst-Off Types

For IC mech ⟨Q,T ⟩, define set of worst-off types Ω(Q) = argminx∈[0,1]{u(x)}.
Then,

Lemma 2: Ω(Q) depends on Q.

Lemma 3: Ω(Q) = argminx′∈[0,1] R̃(Q, x
′)

Seller’s revenue is R(Q,T ) = N(R̃(Q, x ′)− u(x ′)). For optimal mech ⟨Q∗,T ∗⟩,
u(ω) = 0 for all ω ∈ Ω(Q∗). Seller solves

max
Q

R̃(Q, ω), st. ω ∈ Ω(Q)

Lemma 3 implies
Q∗ = argmax

Q
min

x′∈[0,1]
R̃(Q, x ′)
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Saddle-Point Theorem

Seller revenue maximised by Q∗ = argmaxQ minx′∈[0,1] R̃(Q, x
′) (†)

Divide into a saddle-point problem.

Definition

A Saddle-Point of the seller’s virtual surplus R̃(Q, x ′) is an allocation rule and
critical type (Q∗, ω∗) such that

Q∗ = argmax
Q

R̃(Q, ω∗)

ω∗ = argmin
x′

R̃(Q∗, x ′)

Theorem 1

The allocation rule of any saddle-point satisfies (†). Conversely, if Q∗ solves (†),
there exists a critical type, ω∗, such that (Q∗, ω∗) is a saddle point. A solution to
(†) exists, and so there exists a saddle point.
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Strong Monotonicty

Virtual surplus function is

R̃(Q, x ′) =

∫ 1

0

[q0(x)Ψ0(x , x
′) + q1(x)Ψ1(x , x

′)]dF

Pointwise maximisation liable to violate monotonicity =⇒ problem is inherently
non-regular.

Want to iron out objective, but monotonicity constraint q1(x)− q0(x) stops
us ironing Ψ0 and Ψ1 separately.

Lemma 4
Without loss of generality, we can restrict attention to allocation rules Q such
that q1(x) and −q0(x) are weakly increasing (strong monotonicity).
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Ironing

For allocations such that q1(x) and −q0(x) are monotone increasing, can iron
Ψ0(x , x

′),Ψ1(x , x
′) separately.

Ironing

For any critical type x ′ ∈ (0, 1), there exists an interval I (x ′) = [x(x ′), x(x)] ∋ x ′

such that for ℓ ∈ {0, 1} the ironed virtual types are,

Ψℓ(x , x
′) = Ψℓ(x , x

′) + 1{x∈I (x′)}(zℓ(x
′)−Ψℓ(x , x

′))

where z0(x
′), (z1(x

′)) are continuous and increasing (decreasing) in x ′. The
endpoints x(x ′), x(x ′) are continuous and increasing in x ′.

Parameters

Ironing params satisfy z0(x
′) + z1(x

′) = 2v − 1 for any x ′. Additionally, as cts., by
IVT there exists x̂A such that z0(x̂A) = z1(x̂A). Such x̂A corresponds to ironing
interval I (x̂A) ⊂ (0, 1). Details
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(Non)-Optimality of Independent Auctions

Propositon 2

Running two independent Myerson optimal auctions for the goods ℓ ∈ {0, 1} is
optimal if and only if v ≤ 1

2 . If this holds, the seller never serves a non-null set of
buyers.

By Thm 1, indep auctions optimal ⇐⇒ never serve some mass of buyers.

Never serve some mass of buyers ⇐⇒ z0(x
′), z1(x

′) ≤ 0 and I (x ′) ⊂ (0, 1).
Pick x ′ = x̂A such that z0(x̂A) = z1(x̂A) so I (x̂A) ⊂ (0, 1).

As z0 + z1 = 2v − 1 =⇒ z0(x̂A) = z1(x̂A) = v − 1
2 , z0(x̂A), z1(x̂A) ≤ 0 if and

only if v ≤ 1
2

Remark

The condition v ≤ 1
2 holds if and only if two independent auctions are efficient

(with reserve price 0)
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Lottery-Augmented Auctions

By Proposition 2, if v > 1
2 , indep auctions non-optimal.

Proposition 3/Theorem 2

If v > 1
2 and K0 = K1 = N the optimal mechanism (q∗0 , q

∗
1 , t

∗)

q∗0 (x) =


1 if x < α
1
2 if x ∈ [α, β]

0 if x > β

, t∗(x) =


v − ψ−1

S

(
1
2

)
if x < α

v − 1
2 if x ∈ [α, β]

v −
[
1− ψ−1

B

(
1
2

)]
if x > β

and q∗1 (x) = 1− q∗0 (x), for some 0 < α < β < 1.

Proof computes pointwise maximimising ex-post allocation for every critical
type. Then looks for allocation rule and critical type satisfying saddle-point
condition.
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Illustration and Three-Price Implementation

Suppose F ∼ U[0, 1] and v = 1. Then randomised allocations in interval
[
1
4 ,

3
4

]
.

Figure 1

Prices p0 = p1 = v − 1
4 for the

pure goods, 0, 1.

Price pL = v − 1
2 for lottery good.

Can generally decompose into
three prices whenever
K0 = K1 = N and v > 1

2 .

Without this condition, more
complex implementation
needed. . .
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Two-Stage Clock Implementation

Argue in paper that clock auctions have advantages including privacy of winner.

Suppose v > 1
2 and min{K0,K1} < N (so no two or three-price

implementation), can we preserve privacy of winners?

Two-Stage Clock Auction

First Stage In the coarse bidding stage, agents either ask for good 0 or 1, or
neither. If they don’t ask for either good, they are allocated the goods with
some probability based on demand for goods 1 and 0.

Second stage If supply can meet demand of good ℓ ∈ {0, 1} based on coarse
bids, good is immediately allocated to agents. Otherwise, agents are entered
into an ascending price auction with a reserve price.

Theorem 3
The equilibrium of the two-stage clock auction implements the optimal
mechanism in weakly dominant strategies.
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Appendix A: The Single-Good Problem

Suppose N buyers for a single indivisible good. Privately known valuations x ∼ F ,
with density f such that supp(f ) = [x , x ]. By revel’n principle, search for
feasible/implementable direct mechanism ⟨Q,T ⟩.

Implementability: Let (q, t) be interim allocation and transfers for buyer
and u be interim payoff from truthful reporting (same for all i), then ⟨Q,T ⟩
is IC+IR iff,

∀x < x ′, q(x) ≤ q(x ′) (M)

∀x , x ′, t(x) = q(x)x − ui (x
′)−

∫ x

x′
qi (y)dy (Env)

∀x , ui (x) ≥ 0 (IR)

Refer to x ′ as the critical type (show how to choose later).
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Appendix A: The Single-Good Problem

For direct mech ⟨Q,T ⟩ and any critical type x ′, seller revenue is (by (ENV )),

R(Q,T ; x ′) = N

∫
[x,x]

t(x)dF = N


∫
[x,x]

[Ψ(x , x ′)q(x)]dF︸ ︷︷ ︸
:=R̃(Q,x′)

−u(x ′)


where

Ψ(x , x ′) =

{
x − 1−F (x)

f (x) if x > x ′

x + F (x)
f (x) if x ≤ x ′

=

{
ψB(x) if x > x ′

ψS(x) if x ≤ x ′

By (M), q(x) is increasing. As ψS(x) > ψB(x), for fixed rule Q, R̃(Q, x ′) is
minimised at x ′ = 0, the worst-off type!

=⇒ standard problem is to solve Q∗ = argmaxQ minx′ R̃(Q, x ′). Solvable
by ironing out virtual surpluses and maximising pointwise.
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Appendix B: Ironing

In paper, show critical worst-off type lies in some interval [x̂0, x̂1] ∋ x̂A.

Figure 2

At x̂0, z1(x̂0) = 0, z0(x̂0) > 0.

If x ′ ∈ (x̂0, x̂A), z0(x
′) > z1(x

′) > 0.

At x̂A, z0(x̂A) = z1(x̂A) > 0.

If x ′ ∈ (x̂0, x̂A), z1(x
′) > z0(x

′) > 0.

At x̂1, z0(x̂0) = 0, z1(x̂0) > 0.
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Appendix B: Ironing

Figure 3: Uniform locations, v = 1.
Go Back
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