

Selected Facts

Nemanja Antić and Archishman Chakraborty

Micro Theory Reading Group
28/02/2025

PRESENTED BY RAFFI BLASONE

Introduction

- Persuasion model with sender and receiver
 - * Sender (S) privately informed about state of the world
 - * S selects pieces of hard evidence to show to Receiver (R) and recommends action
 - * Based on evidence R takes binary action “accept” a / “reject” r
- S and R have contrasting preferences
 - * S biased towards accepting: in some states S prefers a while R prefers r
- Paper contributions are characterisations of
 - * necessary and sufficient conditions for ‘subversion’
 - * S -optimal strategies
 - * R -optimal ex-ante *restriction* of admissible facts

Outline of Talk

Introduction

Model

Results

Information and Preferences

- S knows state $x \in X$, recommends $d \in \{a, r\}$
- R has full-support prior $p(x)$
- Given x , payoffs depend on *implemented* d
 - * If $d = r$, both get zero
 - * If $d = a$ S gets $v(x)$, R gets $u(x)$
- Agreement subsets of X are
$$A = \{x \in X : u(x) > 0 \text{ \& } v(x) > 0\}$$
$$R = \{x \in X : u(x) < 0 \text{ \& } v(x) < 0\}$$
- Contrast area is $C = X \setminus (A \cup R)$

S 's Strategy and Timing

- Given x , S can produce a report

$$m \in \mathcal{M}(x) = \underbrace{\mathcal{F}(x)}_{\text{available facts}} \times \underbrace{\{a, r\}}_{\text{recommendation}} \times \underbrace{\mathbf{M}}_{\text{cheap-talk message}}$$

- Distinction between *hard* and *soft* evidence
 - * Reporting ϕ means $p(x|\phi) = 0$ whenever $\phi \notin \mathcal{F}(x)$
 - * Soft-information to handle mixing
- Before learning x , S commits to reporting strategy
$$\sigma = \{\sigma(x)\}_{x \in X}, \text{ where } \sigma(x) \in \Delta(\mathcal{M}(x))$$
- S 's problem is Cartesian if
 1. $X = \prod_{i=1}^n X_i$, and each x_i is *decision relevant* aspect
 2. $\mathcal{F}(x) = \{\phi \subseteq \{x_1, \dots, x_n\} : |\phi| = k\}$ for some $k \geq 1$

R 's Strategy

- R forms posterior $p(x|\sigma)$, optimally selects a or r
- Given realised report m , R accepts iff
$$\mathbb{E}[u(x)|m : d(m) = a] \geq 0 \geq \mathbb{E}[u(x)|m : d(m) = r] \quad (1)$$
- A strategy σ is subversive if R accepts whenever $x \in A \cup C$ and rejects if $x \in R$

Graph-Theoretic Setup

- Consider bipartite graph G with $V(G) = A \cup C$
- Nodes connected iff states are “fact-poolable”:

$$E(G) = \{\{x, x'\} : x \in C, x' \in A, \mathcal{F}(x) \cap \mathcal{F}(x') \neq \emptyset\}$$

- Neighbours of $S \subseteq C$ are

$$N(S) = \{x \in V(G) : \{x, x'\} \in E, x' \in S\} \subseteq A$$

Graph-Theoretic Preliminaries

- Matching is $M \subseteq E$ such that

$$\{x, x'\} \in M \implies \{x, x''\} \notin M \text{ & } \{x', x''\} \notin M, \forall x'' \in V(G)$$

- Full-domain injection $f : C \mapsto A$ is “ C -perfect” M

Theorem (Hall's Marriage Theorem)

Given bipartite $G = (A, C)$ a C -perfect matching exists iff

$$|N(S)| \geq |S| \quad \text{for all } S \subseteq C. \quad (\text{HC})$$

Proof.

\implies : $|S| > |N(S)|$ means $f(x) = \emptyset$ for some $x \in S$

\Leftarrow : by induction on $|C|$ (not discussed, check here) ■

Outline of Talk

Introduction

Model

Results

Subversion Iff Pooling Favours a

Theorem (Subversive Strategy)

A subversive reporting strategy exists iff

$$\mathbb{E}[u|S \cup N(S)] \geq 0 \quad \text{for all non empty } S \subseteq C \quad (2)$$

Outline of proof before details:

– Sufficiency:

Step 1: Define auxiliary graph ${}_cG$, suppose (HC) holds,
find subversive σ

Step 2: Show (HC) holds on ${}_cG$ if (2) holds

– Necessity:

Step 1: Argue subversive σ recommends a for
 $x \in C, x' \in N(\{x\})$

Step 2: Use LIE

Proof: Auxiliary Graph

- Define $w(x) = |p(x)u(x)| \in \mathbb{Q}$ (wlog)
- Pick largest $h \in \mathbb{Q}$ so that $w(x)/h = n(x) \in \mathbb{N}$

Define auxiliary graph:

- Nodes are clones of all $x \in A \cup C$ of the form $\{{}_c^i x\}_{i=1}^{n(x)}$
- Cloned graph is still bipartite

$${}_c A = \bigcup_{x \in A} \{{}_c^i x\}_{i=1}^{n(x)} \text{ and } {}_c C = \bigcup_{x \in C} \{{}_c^i x\}_{i=1}^{n(x)}$$

- Preserve original edges:

$$\{{}_c^i x, {}_c^j x'\} \in {}_c E, \forall i, j \in \{1, \dots, n\} \text{ iff } \{x, x'\} \in E$$

Proof: If (1/2)

- Suppose C -perfect ${}_cM$ holds on ${}_cG$
- For any matched $\{x, x'\}$ report m as follows:
 - * Fact $\phi \in \mathcal{F}(x) \cap \mathcal{F}(x')$
 - * Soft-info pins down match with $\mu : {}_cE \mapsto M$
 - * Recommendation $d(m) = a$
- Set $\sigma(y)[m] = {}^h/w(y)$ so that posterior is

$$\Pr[A|d(m) = a, \phi] = \frac{\frac{h}{w(x')} p(x')}{\frac{h}{w(x)} p(x) + \frac{h}{w(x')} p(x')} = -\frac{u(x)}{u(x') - u(x)}$$

- So $\mathbb{E}[u|d(m) = a, \phi] = 0$ and (1) holds: σ subversive

Proof: If (2/2)

- Pick ${}_cS \subseteq {}_cC$, let $S = \{x \in C : \exists i : {}^i_cx \in {}_cS\}$ and

$${}_cS' = \bigcup_{x \in S} \{{}^i_cx\}_{i=1}^{n(x)}$$

- All clones of x have same neighbours so

$$\begin{aligned} |N({}_cS)| &= |N({}_cS')| \\ &= \sum_{x' \in N(S)} \frac{w(x')}{h} \geq_{(2)} \sum_{x \in S} \frac{w(x)}{h} \\ &= |{}_cS'| \geq |{}_cS| \end{aligned}$$

- So (HC) holds on ${}_cG$

Proof: Only If

- $x \in C$ means for some $x' \in N(\{x\})$
 $\text{supp}_a(\sigma(x)) \cap \text{supp}_a(\sigma(x')) \neq \emptyset$

- $\pi(x)$ set of all such x' . Partition

$$S \cup N(S) = (S \cup \pi(S)) \cup (N(S) \setminus \pi(S))$$

- $u > 0$ on $N(S) \setminus \pi(S) \subseteq A$

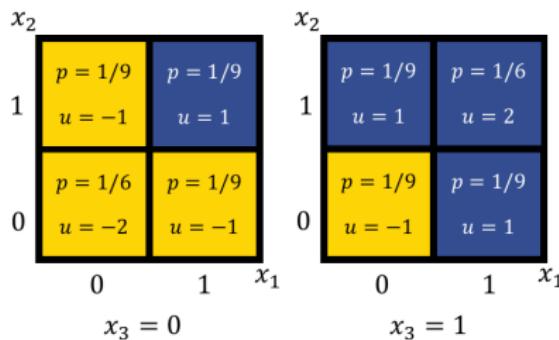
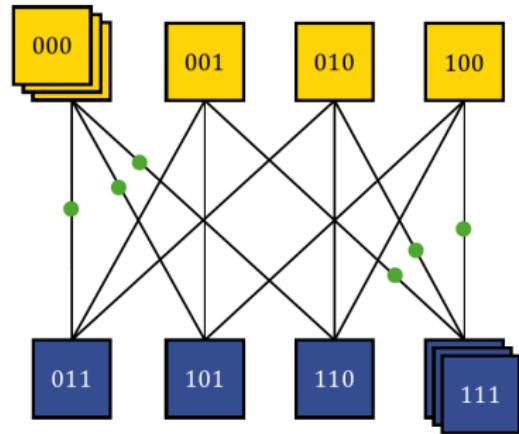
- Term in EU with ambiguous sign is

$$\mathbb{E}[u|S \cup \pi(S)] = \sum_{m \in \text{supp}_a(\sigma(S \cup \pi(S)))} \mathbb{P}[m|S \cup \pi(S)] \mathbb{E}[u|m] \geq 0$$

- Non-negativity follows from σ subversive

Example of Subversion

$$X = \{0, 1\}^3 \text{ and } \mathcal{F}(x) = \{x_1, x_2, x_3\}$$



$$\sigma(x = (0, 0, 0)) = \begin{cases} \phi = x_1, \hat{\mu} \in \{\mu(\{{}_c^i x, (0, 1, 1)\})\}_{i=1}^3, \mathbb{P}(\hat{\mu}) = 1/9 \\ \phi = x_2, \hat{\mu} \in \{\mu(\{{}_c^i x, (1, 0, 1)\})\}_{i=1}^3, \mathbb{P}(\hat{\mu}) = 1/9 \\ \phi = x_3, \hat{\mu} \in \{\mu(\{{}_c^i x, (1, 1, 0)\})\}_{i=1}^3, \mathbb{P}(\hat{\mu}) = 1/9 \end{cases}$$

Optimal Strategy is Maximal-Weight Matching

Theorem (Optimal Strategy Representation)

S 's optimal strategy is a maximal-weight matching on ${}_nG$ and a maximal-cardinality matching on ${}_nG$.

- König-Ore formula yields # of unmatched vertices given ${}_cM$ with maximal cardinality

$$\text{def}({}_cG) = \max_{S \subseteq {}_cC} [|S| - |N(S)|]$$

- Depends on primitive G , not on v
- $\mathbb{E}[u|\text{optimal } \sigma] = \mathbb{E}[u|x \in A \cup C] + \text{def}({}_cG)$
- σ subversive iff $\text{def}({}_cG) = 0$

R -Optimal Fact Restriction is Hall-Deficit Minimiser

Theorem (Design of Admissible Facts)

Given problem \mathcal{P} , the optimal set of admissible facts $\mathcal{F}^(\mathcal{P})$ solves*

$$\begin{aligned}\mathcal{F}^*(\mathcal{P}) = \arg \max_{\mathcal{F}' \subseteq \mathcal{F}} \delta_H(\mathcal{F}') \\ s.t. \quad \mathcal{F}'(x) \neq \emptyset \quad \text{for all } x \in X.\end{aligned}\tag{3}$$

$\mathcal{F}^*(\mathcal{P})$ is invariant to cardinal transformations of v .

- Special case: when $k = 1$, reduce reporting to unique fact with largest δ_H^i
- “Least-poolable” fact