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In class, we saw that given a bargaining problem (X, u1, u2, d1, d2), an allocation
x∗ ∈ X was a Nash bargaining solution if and only if for each i ∈ {1, 2}, for any x̃ ∈ X
and p ∈ [0, 1],

pui(x̃) + (1 − p)ui(d) > ui(x∗) =⇒ pu−i(x∗) + (1 − p)u−i(d) > u−i(x̃)

The representation in terms of threats and counterthreats comes from Rubinstein,
Safra, and Thomson (1992)1. Several students asked why it must be the case that the
counterthreat’s probability of disagreement is necessarily the same as the probability
of disagreement in the threat. That is, why must the probability p be used for both i
and −i.

The reason for this is that in the axiomatic definition of Nash bargaining, we im-
plicitly impose the two agents wield the same bargaining power through the symmetry
axiom. The symmetry axiom imposes that if for any x ∈ X there exists x̂ ∈ X such
that (u1(x), u2(x)) = (u2(x̂), u1(x̂)) and if d1 = d2 then the NBS, x∗ ∈ X, satisfies
u1(x∗) − u1(d1) = u2(x∗) − u2(d2). That is, if the agents have the same utility pos-
sibility sets and the same disagreement point, then they should get the same utility
benefit from bargaining. Whilst this intuitively captures the idea of equal bargaining
power, we formally show the equivalence in the following exercise.

Exercise: Consider the following solution concept for a given bargaining problem
(X, u1, u2, d1, d2). Say that x∗ ∈ X is an α-solution if

x∗ ∈ arg max
x∈X

(u1(x) − u1(d1))α(u2(x) − u2(d2))1−α

For some α ∈ (0, 1). Often in applied work, the above solution concept is used to
model different bargaining power between the two agents. Specifically, α represents
the bargaining weight on agent 1 and 1 − α represents the weight on agent 2.

1. Show that the α-solution concept satisfies the symmetry axiom if and only if
α = 1/2.

2. Show that the α-solution concept may be represented in terms of threats and
counterthreats where the probability of disagreement for player 1’s (counter)threats,
1 − p1, and player 2’s probability of disagreement, 1 − p2, satisfy p1 = p

1−α
α

2 .
1Rubinstein, A., Safra, Z., & Thomson, W. (1992). On the Interpretation of the Nash Bargaining

Solution and Its Extension to Non-Expected Utility Preferences. Econometrica, 60 (5), 1171–1186.
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3. Notice, α = 1/2 if and only if p1 = p2 so that p1 = p2 if and only if the α-solution
is symmetric.

Proof: For brevity, set ∆i(x) := ui(x) − ui(di) ≥ 0.

1) Symmetry axiom ⇐⇒ α = 1
2 . (⇒) We prove the contrapositive. That is, we

show α ̸= 1/2 =⇒ Not Symmetric.
Consider a symmetric problem: d1 = d2 =: d and the feasible utility set symmetric

around the diagonal. We consider a subset of bargaining problems. Specifically, con-
sider the set of bargaining problems which have symmetric frontier ∆1 + ∆2 = C with
C > 0. The α-program becomes

max
0<∆1<C

f(∆1) := ∆α
1 (C − ∆1)1−α.

Compute
f ′(∆1) = α∆α−1

1 (C − ∆1)1−α − (1 − α)∆α
1 (C − ∆1)−α.

The first-order condition f ′(∆1) = 0 is equivalent to

α

∆1
= 1 − α

C − ∆1
⇐⇒ ∆1

∆2
= α

1 − α
.

Hence ∆∗
1 = αC, ∆∗

2 = (1 − α)C. Symmetry (equal utilities) requires ∆∗
1 = ∆∗

2,
which holds iff α = 1

2 . Therefore, α ̸= 1/2 =⇒ Not Symmetric which shows the
contrapositive.

(⇐) If α = 1
2 , the objective ∆1/2

1 ∆1/2
2 = (∆1∆2)1/2 is symmetric in players 1 and 2.

On a symmetric feasible set with d1 = d2, if x∗ maximizes the objective then its swap
also attains the same value. By strict quasi-concavity of the product on {∆i > 0}, the
maximizer is unique; hence ∆1(x∗) = ∆2(x∗). Thus the symmetry axiom holds when
α = 1

2 .

The α-solution satisfies symmetry iff α = 1
2 .

2) Threats–counterthreats representation and the relation between p1, p2.
Define transformed utilities

V1(x) := ∆1(x)α, V2(x) := ∆2(x)1−α.

Then x∗ maximizes the Nash product V1(x)V2(x) (with disagreement Vi = 0). There-
fore, by the standard threats–counterthreats characterization of the Nash solution, for
any x̃ ∈ X and any p ∈ [0, 1],

p Vi(x̃) + (1 − p) · 0 > Vi(x∗) =⇒ p V−i(x∗) + (1 − p) · 0 > V−i(x̃). (†)

Translate (†) into the original ∆-utilities.
Premise (with i = 1):

p V1(x̃) > V1(x∗) ⇐⇒ p ∆1(x̃)α > ∆1(x∗)α ⇐⇒ p1/α ∆1(x̃) > ∆1(x∗).
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Set p1 := p1/α ∈ [0, 1]. Then

p1 u1(x̃) + (1 − p1)u1(d) > u1(x∗).

Conclusion (corresponding i = 1):

p V2(x∗) > V2(x̃) ⇐⇒ p ∆2(x∗)1−α > ∆2(x̃)1−α ⇐⇒ p1/(1−α) ∆2(x∗) > ∆2(x̃).

Set p2 := p1/(1−α) ∈ [0, 1]. Then

p2 u2(x∗) + (1 − p2)u2(d) > u2(x̃).

Eliminating p between p1 = p1/α and p2 = p1/(1−α) yields

p = pα
1 =⇒ p2 = (pα

1 )1/(1−α) = p
α/(1−α)
1 ⇐⇒ p1 = p

1−α
α

2 .

3) Equivalence p1 = p2 ⇐⇒ α = 1
2 .

From part 2,
p1 = p

1−α
α

2 .

If α = 1
2 , the exponent equals 1 and hence p1 = p2. Conversely, if 0 < p1 = p2 < 1,

then
p1 = p

1−α
α

1 ⇒ 1 − α

α
= 1 ⇒ α = 1

2 ,

where we used that for q ∈ (0, 1), q = qk implies k = 1. Combining with part 1,

α = 1
2 ⇐⇒ p1 = p2 ⇐⇒ the α-solution is symmetric.
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