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Intro Theory Marginals Bilateral Trade

Motivation

Central object in mechanism design is allocation rule. Often restricted by
monotonicity.

With one (or symmetric) agent(s), usually require interim allocation rule
q : [0, 1] → [0, 1] monotone increasing.

With n agents, generalise to cyclic monotonicty of interim rules
(q1, q2, . . . , qn) : [0, 1]

n → [0, 1]n.

With convex/linear objective, extreme points are maximisers (Bauer).

In one-agent case, extreme points are indicator functions fy (x) = 1{x≥y}

Extreme points of cyclic monotone functions intractible, even in n = 2 case.

Can we progress by keeping things as univariate as possible?

LSE Reading Group Multidimensional Monotonicity Yang and Yang (30/06/25) 2 / 18



Intro Theory Marginals Bilateral Trade

The Paper: A Roadmap

Start with monotone functions f : [0, 1]n → [0, 1]
Seek to characterise extreme points.

Prop 1: Represent any multivariate monotone function as a univariate
probability distribution over sets.
Thm 1/Prop 2: Characterise extreme points in space of multivariate
monotone functions subject to linear constraints.

In applications, want monotonicity of marginals qi (xi ) =
∫
[0,1]n−1 f (x)dx−i . What

are the extreme points of (q1, . . . , qn) which are rationalised as marginals of some
f (not necessarily monotone)?

Lma 2/3: Monotone marginals can be rationalised by monotone f . Extreme
points of set of marginals is subset of extreme points of f .
Thm 2/3/4: Characterise extreme points in space of monotone marginals
based on extreme points of f : [0, 1]n → [0, 1].

Prop 8/9: Apply results. Focus on interim efficient frontier in bilateral trade.
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Definitions

Let F ⊂ L1([0, 1]n) be all integrable monotone functions f : [0, 1]n → [0, 1]
(convex + compact).

Up-Set

A set A ⊂ [0, 1]n is an Up-Set if x ∈ A, y ≥ x =⇒ y ∈ A

Extreme Point
For a convex set C , x ∈ C is an Extreme Point if it is not a linear combination
of two distinct elements. Denote set of extreme points as Ext(C ).

Nested Up-Sets

A family of up-sets {Ai}i∈I is Nested if Ai ⊂ Ai ′ for any i < i ′.
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To Choquet. . .

Lemma 1 (Choquet, 1954)

An f ∈ F is an extreme point if and only if f = 1A for some up-set A ⊂ [0, 1]n.

Why do we care about extreme points?

Choquet Representation

For any f ∈ F , there exists probability measure µ ∈ ∆([0, 1]) and collection of
up-sets {Ar} such that

f =

∫
[0,1]

1Ardµ(r)

Given objective is linear or convex functional, L : F → R, for any f ∈ F , by
Jensen’s

L(f ) = L

(∫
[0,1]

1Ardµ(r)

)
≤
∫
Ext(F)

L(1Ar )dµ(r)

LSE Reading Group Multidimensional Monotonicity Yang and Yang (30/06/25) 5 / 18



Intro Theory Marginals Bilateral Trade

To Choquet. . . And Beyond

Choquet representation not tractible when including other constraints.

Up-sets may be non-nested.
Complexity blows up when mixing extreme points in Choquet representation.

Nesting Representation

f ∈ F if and only if there exist a Unique collection of Nested up-sets {Ar} and a
Unique probability measure µ ∈ ∆([0, 1]) such that

f =

∫
[0,1]

1Ardµ(r)

Proof Idea: “if” part immediate as monotonicity preserved by mixtures. For
“only if”, write f ∈ F as

f (x) =

∫
[0,1]

1{f (x)≥1−r}dr , Ar := {x ∈ [0, 1]n | f (x) ≥ 1− r}
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Adding Constraints

Given finite collection {ϕj}mj=1 ⊂ L∞([0, 1]n) and {ηj}mj=1 ⊂ R, what are extreme
points of

F :=

{
f ∈ F

∣∣∣∣∣
∫
[0,1]n

f (x)ϕj(x)dx ≤ ηj ,∀j ∈ [m]

}
Without nesting rep, extreme points could be mixture of 2m+1 indicator functions
of possibly non-nested upsets.

Theorem 1

Any f ∈ Ext(F) is a mixture of at most m + 1 indicator functions {1Aj}m+1
j=1

where {Aj}m+1
j=1 where each Aj is an up-set. (Prop 2, partial converse)

Reduces complexity 2m+1 7→ m + 1 =⇒ exponential reduction. Graphics
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Rationalisable Monotone Functions

Rationalisable Marginals

A tuple q = (q1, . . . , qn) of non-decreasing, left-continuous mappings
[0, 1] 7→ [0, 1] is rationalisable, if there exists f : [0, 1]n → [0, 1] (perhaps not
monotone) such that for all i , xi

qi (xi ) =

∫
[0,1]n−1

f (x)dx−i

Let Q be collection of rationalisable q’s.

Want to relate monotone marginals to earlier work on monotone f ∈ F .

Lemma 2

A tuple of one-dimensional monotone functions q = (q1, q2, . . . , qn) is
rationalisable if and only if it can be rationalised by an f ∈ F . That is, Q = P(F)
for some linear projection operator P.
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Extreme Points of Rationalisable Marginals

Lemma 3: Affine Mapping Lemma

Given Q = P(F) for some linear projection P,

Ext(Q) ⊆ P(Ext(F))

Theorem 2: Part (i)

Every extreme point q ∈ Ext(Q) is rationalised by f = 1A for some up-set
A ⊆ [0, 1]n.

Proof Idea: Explicitly, define projection map P : F → Q as

P(f ) =

(∫
[0,1]n−1

f (x)dx−1, . . . ,

∫
[0,1]n−1

f (x)dx−n

)

By Lemma 3, Ext(Q) ⊆ P(Ext(F)). Conclude from characterisation of Ext(F).
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Rationalisable Marginals with Constraints

Fix family {ϕji}
1≤j≤m
1≤i≤n ⊂ L∞([0, 1]) and {ηj}mj=1 ⊂ R. What are extreme points of

Q :=

{
q ∈ Q

∣∣∣∣∣
n∑

i=1

∫
[0,1]

qi (xi )ϕ
j
i (xi )dxi ≤ ηj ,∀j ∈ [m]

}

Theorem 2: Part (ii)

Every extreme point q ∈ Ext(Q) is rationalised by a mixture of {1Aj}m+1
j=1 for some

nested up-sets {Aj}m+1
j=1

Proof Idea: Similarly, Q = P(F). Use characterisation of extreme points of F .
Necessary conditions for extreme points of Q and Q. In general, not sufficient.
But can be sharpened when n = 2.
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Rationalisable Monotone Pairs

Restrict attention to n = 2 (2 agents).

Theorem 3

q = (q1, q2) is in Ext(Q) if and only if q is rationalised by 1A for some up-set
A ⊆ [0, 1]2. Moreover, every extreme point of Q is uniquely rationalised.

Proof Idea: Necessity immediate from Theorem 2. WTS any q ∈ Q rationalised
by 1A for up-set A ⊆ [0, 1]2 is an extreme point.

Instead show q is exposed point. That is, there is a cts. linear functional
whose unique maximiser is q.
As A up-set A = {(x1, x2) : x2 ≥ g(x1)}. Let ϕ1(x1) := −g(x1), ϕ2(x2) := x2.
Notice, ϕ1(x1) + ϕ(x2) = x2 − g(x2). Greater than 0 if and only if
(x1, x2) ∈ A.
So f = 1A is unique maximiser of

L(f ) :=

∫
[0,1]2

(ϕ1(x1) + ϕ2(x2))f (x1, x2)dx =⇒ (q1, q2) ∈ Ext(Q)
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Monotone Pairs with One Constraint

Add one constraint to 2-agent characterisation. Fix ψ1, ψ2 ∈ L∞([0, 1]), and
η ∈ R. Recall

Q =

{
q ∈ Q

∣∣∣∣∣
∫
[0,1]

q1(x1)ψ1(x1)dx1 +

∫
[0,1]

q2(x2)ψ2(x2)dx2 ≤ η

}

Theorem 4

Any q ∈ Ext(Q) is rationalised by a mixture of 1A and 1A′ where A′ ⊆ A ⊆ [0, 1]2

are nested up-sets that differ by at most a rectangle. Moreover, this is the unique
rationalising function of q.
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Projections with Other Measures

Fix two CDFs, G1,G2, cts. and full support on [x1, x1], [x2, x2], respectively.

(G1,G2)-Rationalisability

q = (q1, q2) are (G1,G2)-rationalised by f : [x1, x1]× [x2, x2] → [0, 1] if

(q1(x1), q2(x2)) =

(∫
[x2,x2]

f (x1, x2)dG2(x2),

∫
[x1,x1]

f (x1, x2)dG1(x1)

)

Let Q(G1,G2) be set of (q1, q2) non-decreasing functions that are (G1,G2)

rationalisable. Define Q(G1,G2)
analogously as before.

Corollary 2

Any q ∈ Ext(Q(G1,G2)
) is rationalised by a mixture of 1A and 1A′ where

A ⊆ A′ ⊆ [x1, x1]× [x2, x2] are nested up-set that differ by at most a rectangle.
Moreover, this is the unique rationalising function of q.
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Bilateral Trade: Interim Frontier

Suppose a buyer and seller bargaining over sale of single indivisible good.

1 Private-value buyer, v ∼ F . Density f with full support over [v , v ].

2 Private-cost seller, c ∼ G . Density g with full support over [c , c].

3 Trade in direct & incentive compatible mechanism

(p, t) : [v , v ]× [c , c] → [0, 1]× R

4 Let UB(v) and US(c) be interim payoffs.

Want interim constrained Pareto frontier. Let ΛB ∈ ∆([v , v ]),ΛS ∈ ∆([c , c]) be
welfare weights. Solve

max
(p,t)

∫ v

v

UB(v)dΛB(v) +

∫ c

c

US(c)dΛS(c)

subject to IC + IR for B and S .
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Bilateral Trade: Interim Frontier

Definition: Markup-Pooling Mechanism

A mechanism (p, t) is markup-pooling if there exists non-decreasing ϕ, an
interval I = [cL, cH ], and constant k ∈ [0, 1] such that

1 If c ̸∈ I , B and S trade if and only if v ≥ ϕ(c)

2 If c ∈ I , let ĉ = cH with probability k and ĉ = cL with 1− k probability.
Then, trade occurs if and only v ≥ ϕ(ĉ).
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Bilateral Trade: Interim Frontier

Proposition 8

For any welfare weights ΛB ,ΛS , there exists a markup-pooling mechanism
maximising expected welfare.

Proof: Let M be collection of IC + IR mechanisms. Define possibility set

U := {(UM
B ,U

M
S ) : M ∈ M}

WTS extreme points of U are markup-pooling =⇒ claim by Bauer

Hard problem, instead show that for any z ∈ R+, extreme points of

Uz := {(UM
B ,U

M
S ) : M ∈ M,UM

B (v) = z}

are markup-pooling.

Benefit of Uz — can fix one agent’s payoff, gets back to n = 1 case.
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Bilateral Trade: Interim Frontier

By Myerson Sattherthwaite (1983),

Π(PS ,PB) :=

∫ v

v

PB(v)

(
v − 1− F (v)

f (v)

)
dF −

∫ c

c

PS(c)

(
c +

G (c)

g(c)

)
dG

= UB(v) + US(c)

where PB ,PS are interim alloc rules.

Define

Q = {(PB ,PS) : (F ,G )−rationalisable, PB non-decreasing,PS non-increasing}

Let
Qz = {(PB ,PS) ∈ Q : Π(PB ,PS) ≥ z}
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Bilateral Trade: Interim Frontier

Now, define linear operator Lz : Qz → Uz as

L[PB ,PS ](v , c) =

(∫ v

v

PB(x)dx + z ,

∫ c

c

PS(x)dx +Π(PB ,PS)− z

)

Then, Uz = L(Qz).

Therefore, Ext(Uz) ⊆ Ext(Qz) (Lma 3).

Any point of Ext(Qz) must have form

1A1 + λ1A2\A1

where A1 ⊆ A2 are nested up-sets in (v ,−c) space and A2 \ A1 is a rectangle
(Thm 3).

Any such mechanism is implementable by markup-pooling.
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Graphics

Extreme Points of F

Figure 1: Extreme points of F

Both (a) and (b) represent function f (x) = λ1A + (1− λ)1A′ . In (a), A,A′ are
nested and f is an extreme point. In (b), A,A′ are not nested, so f is not an
extreme point. Go Back
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